
4. Estimation of breeding value. BLUP

4.1 Introduction
The selection index principle assumes that true means and variances are known. When this is
the case, the best linear prediction, BLP, of the breeding value, I, is

where  are the true means of breeding value and phenotypic trait, respectively. In
practice, true means and variances are not known. In spite of that, selection indices have
served their purposes. There are, however, some potential sources of error that could be
overcome if fixed effects and breeding values were estimated simultaneously as is the case
when using BLUP methodology (BLUP = Best Linear Unbiased Prediction):

1. Adjustment for fixed effects is often based on historical data. Therefore, adjustment
factors used may not be quite in agreement with those effects that should be adjusted.
This may change the ranking of potential breeding animals.

2. Adjustment for herd means, by using the record as a deviation from the herd mean,
assumes that the animals in the groups that are compared are contemporary. This
may be difficult to achieve in practice, and often it will result in the groups being so
small that the mean will be estimated with large error which in turn will affect the
phenotypic deviations. This is not accounted for in the selection index.

3. Fixed effects are not adjusted for differences in genetic levels of the groups.

4. The selection index does not account for selection going on, nor does it account for
assortative mating.

5. The selection index does not account for different genetic levels of the groups from
which the deviations are computed, e.g. herds. Two animals from different herds
having the same deviation from the mean, will be ranked equal, even if the two herds
have different genetic levels.

When using the BLUP method, where all the effects are estimated simultaneously, these
difficulties have been overcome. The breeding value may be written as

where ui = BLUP of true breeding value (or half the breeding value in
some cases)

: + gi  = BLUE (Best Linear Unbiased Estimate) of genetic level 
Pi

 = phenotypic observation
f(a,b,...,u,..) = mean of an estimated value of comparison for each phenotypic ob-

servation based on BLUE  of relevant fixed effects a,b,...  and
BLUP of breeding value u for individuals in the comparison group.



In practice, BLUP of breeding values are obtained as solutions to Henderson's Mixed Model
Equations (MME). MME are normal equations of a generalised least squares type. They are
generated from phenotypic observations by means of a statistical model that describes the
observations. Solving such a system of equations results in "partial" effects in the same way
as the regression coefficients in a multiple regression. In this way, the effects are estimated by
simultaneously taking other factors into consideration. The fixed effects in the model are
BLUE and the random effects are BLUP.

4.2 Animal model
A typical mixed model might look as follows:

Pijkl = : + ai + hj + ... + uk + eijkl

where Pijkl is a phenotypic observation
: is the overall mean
ai, hj are fixed effects
uk is a random effect, e.g. the genotypic value of individual k
eijkl is a random effect specific for each observation

In matrix form, this can be written

or
y = Xb + Zu + e (33)

It is assumed that the expectations are E(y) = Xb,  E(u) = 0 and E(e) = 0. Further it is assumed
that the residuals are independently distributed with variance F2

e. Therefore V(e) = IF2
e = R,

V(u) = AF2
A = G and COV(u,e) = COV(e,u) = 0. Hence

 

X and Z are incidence matrices. This is the usual way of writing a BLUP model. In general, b
represents fixed effects and u represents random effects, e.g. breeding values. Note that X and
Z are very large when the number of observations is large.

In general matrix terms, Henderson's Mixed Model Equations are :



Note  that R is diagonal with  on the diagonal, X and Z are incidence matrices and A is the
additive relationship matrix. If  the animals are unrelated, the variance of A is diagonal with

 on the diagonal, i.e. . The MME equations can therefore be written as 

Multiplying through with  gives

The term  is usually called  8. Since ,

and Therefore,  can be written as 

Example 4.2.1
In the following example,  milk yield is recorded for three unrelated cows:

Cow Yield
1 3000
2 4000
3 5000

Spelled out in detail, the model can be written as

Pi = : + u1 + u2 + u3 + ei

The incidence matrix is most easily set up by listing each animal below the model, writing the
record (Y) to the left and the incidence matrix to the right of the equal sign in the model by
writing a 1 if the effect is present and 0 otherwise (omitting the e's):

Yi : u1
u2 u3

3000 1 1 0 0
4000 1 0 1 0
5000 1 0 0 1

Then P = ,  and Z = .



Assuming a heritability of 0.5, 8 becomes 1. Hence A-18 is a 3x3 diagonal matrix with 1's on the

diagonal. The equation system then becomes:

The solution is 

For the three unrelated animals, the system of equations is the following:



For one animal, the equation is

This is the same equation as is obtained by the selection index equations, the only difference

being that in BLUP, : is estimated from the data simultaneously with the breeding values.

4.2.1 Use of the relationship matrix

If the animals are related, then the variance of u, AF2
A, is no longer diagonal. Use of the

relationship matrix is shown in example 4.2.1.1.

Example 4.2.1.1

The following data are available:

Animal Sire Dam Trait

1 ? ? 10

2 ? ? 9

3 ? ? 8

4 ? ? 7

5 1 2 9

6 1 2 10

7 3 4 8

8 5 6 11



The animals 1, 2, 3 and 4 are assumed to be unrelated and not inbred. Then the relationship

matrix is:

1.2 1.2 3.4 5.6

1 2 3 4 5 6 7 8

1 1 0 0 0 0.5 0.5 0 0.5

2 0 1 0 0 0.5 0.5 0 0.5

3 0 0 1 0 0 0 0.5 0

4 0 0 0 1 0 0 0.5 0

5 0.5 0.5 0 0 1 0.5 0 0.75

6 0.5 0.5 0 0 0.5 1 0 0.75

7 0 0 0.5 0.5 0 0 1 0

8 0.5 0.5 0 0 0.75 0.75 0 1.25

The animal model equations are

where Y is the vector of observations on the 8 animals and 1 is a vector of ones of dimension 8.

Let h2 be 0.5, then The inverse relationship matrix A-1, is

With 8 = 1, the equations are



Consider the equation for animal 1:

: + 3u1 + u2 - u5 - u6 = 10

Isolating u1 gives     u1 = 1/3(10 - : - u2 + u5 + u6)

which can be written as     u1 = 1/3[(10 - :) + (u5 - 1/2 u2) + (u6 - 1/2 u2)]

 = 

The contribution of each progeny to the breeding value of animal 1 is adjusted for half the

breeding value of the mate, i.e. animal 2. This is an adjustment for assortative mating. It can

also be seen that the record is adjusted for fixed effects, in this example the mean. For animal

8 the equation is

: - u5 - u6 + 3 u8 = 11

Rearranging gives 3u8 = 11 - : + u5 + u6

u8 = 

= 

= 

= 



The first term is the predicted breeding value of animal 8 based on the breeding value of u5 and

u6, the parents of animal 8. The second term is the phenotypic observation adjusted for fixed

effects and the parents breeding value, weighted by the within family heritability. This is an

estimate of the contribution of Mendelian sampling to the breeding value of animal 8. The within

family heritability is

where  is the average inbreeding of the parents. 

For this example, 

The transposed solution vector is

The breeding value of animals in the base population sum to zero. The base population in this

example is the animals 1, 2, 3 and 4. The average of their breeding values is 

1/4(0.8675 + 0.3676 - 0.3676 - 0.8676) = 0

The averages of expected breeding values of animals in subsequent generations are not zero.

Generation 2 in this example is made up of animals 5, 6 and 7. The average of their breeding

values is

1/3(0.6716 + 1.0049 - 0.6471) = 0.343

This figure represents selection and random drift. Animals 1 and 2, who had the highest breeding

values in the base population, produced two progeny and animals 3 and 4, having the lowest

breeding values in the base population, produced one progeny. This will explain why the average

breeding value of animals in the first generation is greater than zero. Because of this property

with the animal model, it can be used to estimate response to selection.



Example 4.2.1.2

In this example, both : and year are included as fixed effects. The following data are available:

Animal Sire Dam Y Year

5 1 3 250 2

6 1 3 198 2

7 2 4 245 2

8 2 4 260 2

9 2 4 235 2

4 - - 255 1

3 - - 200 1

2 - - 225 1

We may set up the following model:

y =  Xb + Zu + e

where y = vector of observations

b = vector effect of : and of year effects

u = vector of breeding values

X,Z = incidence matrices

e = vector of random residual elements

Let W = [ X   Z ]. Then

Then the y vector and the W matrix can be set up by writing out the model in detail, omitting e,

and below write y-value or 0 or 1 depending on whether the effect is present or not:



Transposing W and multiplying by W gives

The inverse of the relationship matrix can be set up directly, using the method described in

chapter 3. *i is 1 for the animals 1-4 and 2 for the animals 5-9:



The system of equations then becomes

Let h2 = 0.33 and = 2. Then the system of equations is:

The  equation for : gives the average adjusted for year effects and breeding values:



The equations for herd effects:

These are herd effects adjusted for mean and breeding values. Equation for u1 (parent without

own record):

2 8u1 + 8u3 - 8u5 - 8u6 = 0

After rearranging this can be written as

u1 = ½(u5 - ½u3) + ½(u6 - ½u3) = 

The breeding value of a parent without record is based on breeding values of the progeny adjusted

for breeding value of the mates. Equation for u2 (parent with own record):

: + b1 + 6u2 + 3 u4 - 2 u7 - 2 u8 - 2 u9 = 225

Rearranging gives:

This is the record of the parent adjusted for mean and fixed effects. In addition there is a 

contribution from each progeny adjusted for breeding value of the mate.

Equation for u7 (animal with record):



The first expression is the average breeding value of the parents. The second is the yields adjusted

for fixed effects expressed as a deviation from the parental mean and weighted by the within

family heritability. Solution to the equations is:

4.2.2 Prediction error variance

Henderson has shown that prediction error variance is a function of the diagonal elements of the

inverse of the coefficient matrix and the residual variance. Let

Then

PEV is the fraction of the additive variance not accounted for by the prediction. 

What is the proportion of the additive variance not accounted for by the prediction?

is  the squared correlation between true and predicted breeding value. It is the

coefficient of determination, i.e. it is a measure of the proportion of the variation in true breeding

value that is accounted for by the variation in estimated breeding value. Then

is the proportion not accounted for. Then for animal i



Therefore

and standard error of prediction

4.3 Reduced animal model

The breeding value of an animal can be expressed as the sum of the additive genetic contributions

of gametes from its parents, gs from the sire and gd from the dam:

ui = gs + gd

If there is no selection or linkage, and if the gametes unite randomly, the variance of the breeding

value is

Each gametic value can be expressed in terms of the breeding value of the parent (p) from which

it was obtained plus a Mendelian sampling term:

gp = ½ up + mp,

where up is the breeding value of the parent and mp is the contribution from sampling genes from

the parents to the progeny. The variance of gp is then 

V(gp) = 0.25 V(up) + V(mp)

and if there is no selection

Quaas and Pollak developed in 1980 a gametic or reduced animal model. Such a model can

reduce computational requirements because it reduces the number of equations. The  model is



ui = gs + gd = ½ us + ½ ud + mi

where mi = ms + md

The variance of m  is (see page 37)

Equations for an animals breeding value are expressed in terms of the breeding value of its

parents and a Mendelian sampling term combining both sire and dam contributions. The breeding

values for all progeny with identified parents are

u = Zup + m

Z has one row for each progeny and one column for each parent. All elements of Z are zero

except for the elements corresponding to the elements of the parents. These elements are ½.

Under the reduced animal model, the variance of breeding values is 

where Ap is the additive genetic relationship matrix for the parents and D is a diagonal matrix

with diagonal elements  is the number of known parents., i. e.

the coefficient    (1 - ¼ np) becomes 1, ¾ or ½ if 0, 1 or 2 parents are known (see chapter 3). 

Consider the following animal model

yi = : + ui + ei,

where ui is the additive genetic value and ei is the environmental value of the ith animal. In matrix

notation, the model is

y = Xb + Zu + e

and if there is only one record per animal, Z = I and



We can express the genetic value of an individual in terms of gametic contributions of its parents

plus a Mendelian sampling term:

ui = ½ us + ½ ud + mi

where us and ud are the breeding values of the sire and dam of animal i and mi is the Mendelian

sampling. The gametic model is therefore

yi = : + ½ us + ½ ud + mi + ei

The term mi and ei can be combined into a single residual term

e*i = mi + ei

with variance

where dii = ½ or ¾ if both or one parent is known.  is the average inbreeding of the sire and

the dam. In matrix notation, the gametic model can be written as

y = Xb + Zup + e*

where up is a vector of breeding values of parents and Z is an incidence matrix of 0 and ½, where

½ identifies the parents of each animal with record. 

We now assume that  where Ap is the additive genetic

relationship matrix among parents and F2
e* = dii F

2
A + F2

e. We can therefore partition y into

parental records and offspring records, yp and yo:



Then 

R is unaffected by selection, Ap accounts for all relationship among parents, and Z traces the flow

of genes from parents to offspring. 

The breeding values of the offspring can be obtained by back solving:

uo = ½(us + ud) + ci(Y - Xb - ½(us + ud))

where

dii is diagonal element i of the D-matrix.

Example 4.3.1

The following data have been collected:

Animal Sire Dam Herd Yield

1 - - - -

2 - - 1 11

3 - - - -

4 - - 2 7

5 1 2 1 10

6 1 2 2 9

7 3 4 2 8

Assume . This gives a heritability of h2 = 1/(1 + 1) = 0.5. We can set up the

following model:

y = Xb + Sup + e



The equations are:

X is the incidence matrix for fixed effects. Animals 1 and 3 have no record, animals 2 and 5 are

in herd 1 and animals 4, 6 and 7 in herd 2. Hence

Parents, i.e. animals 1, 2, 3 and 4 are unrelated. Therefore

R is diagonal with  on the diagonal elements corresponding to the parents having record and

elsewhere   = 0.5 (1) + 1 = 1.5, because parents are not inbred. R is

therefore

S is a partitioned matrix composed of a matrix with number of rows corresponding to the number

of parents with records and number of columns corresponding to total number of parents. This

matrix contains a 1 for the elements corresponding to parents with record. In addition S contains

an incidence matrix with zeroes in all places except those elements identifying parents, which are

½. S is therefore



Then 

Similarly we can compute S'R-1S as



Finally, Ap a 4x4 identity matrix, and the additive genetic variance = 1, so  is also a

4x4 identity matrix. The full equation system  is then



The following solution is obtained:

The breeding values of the progeny may now be obtained by back solving. Both parents are

known for all offspring and F2
A = F2

e = 1. Hence, c = a.

u5= ½(u1 + u2) + 1/3(y - b1 - ½(u1 + u2) 

= ½(0.064 + 0.397) + a(10 - 10.269 - ½(0.064 + 0.397)) = 0.064

u6= ½(0.064 + 0.397) + a(9 - 8.077 - ½(0.064 + 0.397)) = 0.461

u7= ½(0.051 + (-.513)) + 1/3(8 - 8.077 - ½(0.051 + (-0.513))) = -0.179

4.4 Repeatability model

When there are more observations per animal, the animal model should be modified to a

repeatability model. A repeatability model might have the following form:

y = Xb + Zu + Zp + e

where y = vector of observations

b = vector of fixed effects

u = vector of breeding values

e = vector of residuals

p = vector of permanent environmental effects

X and Z = incidence matrices

It is assumed that E(y) = Xb and .



The MME are

Since the phenotypic variance, 

then  

Consider the following data for feed intake on dairy cows from parturition to 4 weeks in the

lactation for first lactation cows:

Cow Sire Dam Feed intake

5 10 1 2.1, 2.5

6 10 2 1.8, 1.9, 2.3

7 20 3 3.0

8 20 4 2.8, 2.7

9 20 4 2.6

The following model applies:

y = Xb + Zu + Zp + e

where b, y, u, e, X and Z are as defined above. 

The animals 1 through 4, 10 and 20 do not themselves have records. We can partition the vector

of breeding values, u, into u1 and u2, where u1 contains the breeding values of animals without

records and u2 contains breeding values of animals with records. Then Z can be partitioned

correspondingly into Z1 and Z2, where Z1 is 0. Further, if we let



then the equations become

Let

To set up the equations, write out the following



Call the entire design matrix W and calculate W'W and W'y. Add A-18 and I( starting at the

proper elements of W'W to obtain

The solutions are b = : = 2.5010



The equation for cow no. 6 is:

3 : + 9 u6 - 3 u10 - 3 u2 + 3 p6 = 6.0, or

ni : + (ni + 28)ui - 8 us - 8 ud + ni pi = ,

where ni is the number of records of the ith individual

us is breeding value of sire

ud is breeding value of dam

This equation can be rearranged to give

The breeding value of animal i is composed of the average of the observations, , an

adjustment for :, an adjustment for permanent environmental effects, pi, and an adjustment for

the deviation of the breeding value from an index based on the average breeding values of the

parents, us and ud. The genetic merit of the animal is thus compared with the predicted genetic

merit based on the genetic merit of the sire and dam of the animal and adjusted for fixed effects

and permanent environmental effects. If the cow also had progeny with records, then the general

form of ui would be

where uj is the breeding value of progeny of cowi,

umj is the breeding value of the mate of cowi, and

l is the number of progeny of cowi,

i.e. each progeny is compared to its pedigree value. If there is random mating, then as l goes to

infinity, the sum of these differences goes to zero. The animals own difference from the pedigree

value will not change by much, but the influence of that difference will decrease as the number

of records, ni, increases. With the exception of males used for AI, most animals will have less

than 20 records or progeny. Therefore, A-1 may have a substantial influence on the evaluation of

the individuals.



4.5 Animal model with grouping

When using the relationship matrix in animal model BLUP estimation of breeding values, it is

assumed that all animals with unknown parents are sampled from a single population with

average breeding value of zero and common variance . Breeding values of animals in

subsequent generations are expressed relative to breeding values of animals in the base

population. However, there will often be animals in a population with unknown parents and

derived from a population with a genetic mean different from the one in the population, in which

they are active. An obvious example is bulls or boars imported from other countries. Although

being of the same breed, the base population in Denmark may date back several decades while

imported breeding stock may constitute a base population of a much newer date. If this is not

accounted for in the model, the imported stock will be part of the common base population and

affect the genetic mean, i.e. it will introduce a bias in the breeding values. 

A procedure for grouping animals derived from different base populations has been developed

by Westell and Van Vleck (Westell & Van Vleck, 1987. J. Dairy Science70, 1006). If, for

instance, sires have been imported over a period of time, these sires could be assigned to groups

according to their year of birth or country of origin. Each sire with one or both parents unknown

is assigned phantom parents in such a way that each phantom parent only has one progeny. The

phantom parents are then grouped according to the chosen criteria (e.g. year of birth, country of

origin, sex of progeny). The following model will apply:

  

where

yij = observation on animal i in systematic effect j

bj = systematic effect j, e.g. herd j

ui = effect of animal i

aik = additive genetic relationship between the ith and the kth animal, summation being

over all n ancestors of animal i

gk = group effect containing the kth ancestor

eij = random environmental effect



Note that the term weighs the contribution of the group to the observation with the

proportion of the genes passed on to the animal with record by the ancestors in the group. 

Let G be a matrix that assigns ancestors to groups and T a lower triangular matrix expressing

the flow of genes through generations (obtained from A = TDT’). Then the matrix Q = TG is

a matrix expressing the proportion of genes contributed by ancestors of the groups. The model

can then be written

y = Xb + ZQg + Zu + e

  

The Mixed Model Equations are

The breeding value used for ranking the animals is then u* = Qg + u, i.e. the group effect

weighted by the proportion of genes contributed by the group is added to the breeding value.

In other words, the breeding value, u*, is estimated relative to a mixture of two base

populations, depending on the proportion of genes originating from the two base populations.  

The MME can, however, be modified in such a way that u* is ubtained directly (Westell et al.,

1988. J. Dairy Sci. 71, 1310):

where n is the number of animals and p is the number of groups. The relationship matrix is

extended so as to comprise the groups, and the inverse is obtained using the usual rules (see p.

38), i.e.



If parents unknown,  * = 1

if one parent is known, * = 4/3

if both parents are known * = 2,

or * = 4/(2 + number of phantom parents of animal i assigned to groups). 

Then add

*i to element (i,i) of A-1

-*i/2 to the elements (i,s), (s,i), i,d) and (d,i)

*i/4 to elements (s,s), (d,d), (s,d) and (d,s)

Example 4.5.1

Given the following data of lean content measured on pigs:

Table 4.1. Lean content based on ultrasonic measurements 

Pig no. Sex Sire Dam Per cent lean

4 1 1 - 62.0

5 2 1 3 59.0

6 2 2 4 61.7

7 1 2 5 61.0

8 1 1 6 62.8

If these data are analysed using an ordinary animal model, we set up the model

y = Xb + Zu + e

where

y = vector of observations

b = vector of fixed effects

u = vector of breeding values

X, Z = incidence matrices



The heritability of lean content is estimated to 0.5. The MME before adding A-18 are

The inverse relationship matrix is

                  A-1 = 

Since the heritability is 0.5, and , A-18 = A-1. Adding this to the coefficient

matrix gives the following MME:



and the solution is : = 60.43, b’ = [1.35   -0.11] and

 u’ = [-.014  0.252  -.430   0.281   -.653   0.712   -.393   0.573]

Assuming that the unknown sires and dams have different genetic origin, we may assign these to

two different groups. We can assign phantom parents to the animals with unknown parents. Each

animal has different phantom parents:

Animal Sire Dam

    1   P1 P2

    2   P3 P4

    3   P5 P6

    4    1 P7

    5    1  3

    6      2  4

    7    2  5

    8    1  6

The T-matrix is



We can now assign the phantom parents to groups by setting up the following matrix (G). The matrix

will assign the unknown sires of animals 1, 2 and 3 (phantom parents P1, P3 and P5) to one group and

the unknown dams of animals 1, 2, 3 and 4 (phantom parents P2, P4, P6 and P7) to another group.

Column 1 identifies group 1 and column 2 identifies group 2:



                               and the product Q = TG = 

The product, Q, shows how each animal is related to the phantom parents in group 1, respectively

group 2. The MME are now

Inserting the figures from the example gives the following set of equations:



and the solution is : = 62.05, b’ = [1.48    0.16] , 

 u’ = [-.016  0.333  -.317   -.009   -.483   0.585   -.164   0.585] and g = [-4.350    0.000]. The group

effects influence both fixed effects and breeding values. These estimates differ therefore from those

obtained using the model without grouping.

The breeding values taking groups into consideration are now u* = u + Qg:

      

A solution for the breeding values directly can be obtained using the MME



These equations look as follows:

The solution is : = 62.20, b’ = [1.32    0.00] ,

 u’ = [-2.192  -1.842  -2.492   -1.096   -2.658   -1.047   -2.340   -1.319] and g = [-4.350    0.000].

These estimates are similar to those obtained above.



4.6 Sire model

Traditionally, sire models have been used in the estimation of breeding value in cattle. The reason for

this is partly that bulls normally have a large number of progeny because of the use of AI, so that the

main part of the genetic progress comes from selection of bulls, partly that these models are easier to

handle computationally. The model is

y = Xb + Zs + e,

where y is a vector of observations

b is a vector of fixed effects

s is a vector of transmitting abilities (half the breeding values)

X and Z are incidence matrices.

The expectation of y is E(Y) = Xb and 

Only bulls are evaluated and the additive relationship matrix includes only relationships between

bulls. Further, since , then



Example 4.6.1

The following example is from Nicolas (1987). Milk yiels has been recorded on 14 cows:

Herd-year-season Sire Cow Yield

1 1 111 3677

1 1 112 4161

1 1 113 3505

1 1 114 3904

1 3 131 3957

1 3 132 3447

2 1 211 3534

2 2 221 2941

2 2 222 3366

2 2 223 3755

2 3 231 2318

2 3 232 2730

2 3 233 3629

2 3 234 3158

The model is

y = Xb + Zs + e

where y = vector of yields for the cows

b = herd-year-season fixed effects

s = transmitting ability of the sires

e = vector of residuals 

X,Z = incidence matrices

It is assumed that the sires are unrelated and that the heritability is 0.25, giving 8 = (4 - 0.25)/0.25 = 15.

To set up the equations, write out the model except the residuals and make W = [X  Z]:



Now calculate 

 and 

Since the sires are unrelated, A-18 = I8. The equations therefore become



The solution is : = 3172.0;   

The s vector contains the transmitting ability of the sires. Their breeding values are therefore 48.6 for sire

1, 54.2 for sire 2 and -102.8 for sire 3.

What is the relation between breeding values obtained by the sire model and by the selection index

method? In the selection index method, the first step is to adjust the data for fixed effects (herd-year-

season, HYS). The following means can be obtained from the data:

Overall mean Herd-year-season means Sire means

34344 (1)   3775.2 (1)   3756.9

(2)   3178.9 (2)   3354.2

(3)    3206.5

Now compute the average HYS effect for progeny of each of the three sires. Sire1 has 4 progeny in HYS1

and 1 progeny in HYS2, sire2 has 3 progeny in HYS2 and sire3 has 2 progeny in HYS1 and 4 progeny in

HYS2.

HYS for sire = (no. of progeny in HYS1( HYSmean1) + 

no. of progeny in HYS2( HYSmean2)/no. of progeny

HYS for sire1 : (4(3775) + 3178.9)/5 = 3655.9

HYS for sire2 : 3178.9

HYS for sire3 : (2(3775.2) + 4(3178.9))/6 = 3377.7

Next, compute sire means adjusted for HYS-effects:

sire mean - (HYS for sire - overall mean)

Mean for sire1 : 3756.2 - (3655.9 - 3434.4) = 3534.7



Mean for sire2 : 3354.2 - (3178.9 - 3434.4) = 3609.7

Mean for sire3 : 3206.5 - (3377.7 - 3434.4) = 3263.2

Now the breeding values may be calculated as

The breeding values found using the sire model are u’ = [ 48.6    54.2     -102.8 ]. In the selection index

approach, the data are adjusted for fixed effects before calculating the breeding values. When using

BLUP, fixed effects and breeding values are estimated simultaneously. The result of this is that fixed

effects are also adjusted for breeding values. If the herd-year-season effects and the overall mean used in

the selection index case are  adjusted for breeding values, identical breeding values are obtained for the

two methods.

Herd-year-season effects are adjusted for breeding values using the following expression:

HYSi = unadjusted mean of HYSi
  - E((no. Of sires in HYSi)

 (transmitting ability for sirej))/no. of sires -

adjusted overall mean:

HYS1 = 3775.2 - (4(24.3) + 2(-51.4))/6 - 3172 = 604.1

HYS2 = 3178.9 - (24.3 + 3(27.1) + 4(-51.4))/8 - 3172 = 19.4

The overall mean adjusted for HYS-effects and for breeding values then becomes

mean  = 3434.4 - [6(604.1) + 8(19.4) + 5(24.3) + 3(27.1) + 6(-51.4)]/14 = 3172

Using these estimates, HYS for sires can now be obtained as:



HYS for sire1 : (4(604.1) + 19.4)/5 = 487.2

HYS for sire2 :   19.4

HYS for sire3 : (2(604.1) + 4(19.4))/6 = 214.3

The sire means are adjusted for adjusted HYS using the following expression:

Adjusted sire mean = unadjusted sire mean - adjusted HYS for sire

Sire1 : 3756.2 - 487.2 = 3269.0

Sire2 : 3354.2 -19.4  = 3334.8

Sire3 : 3206.5 - 214.3 = 2992.2

The breeding values can now be calculated:

These breeding values are identical to those obtained using the sire model.



4.7 Multiple trait BLUP

The value of an animal is usually not restricted to a single trait. As a general rule, several traits are

included in the breeding goal. Using the single trait animal model to estimate breeding values implies that

in combining the breeding values into an index comprising more than one trait, no attention is paid to the

phenotypic and genetic correlations between the traits. 

A multiple trait animal model takes into consideration associations between the traits, because both

environmental and genetic variances and covariances are included in the estimation. Therefore, provided

reliable covariances can be obtained, the multiple trait animal model gives better estimates of breeding

values. 

The increase in accuracy of estimation depends on the difference in genetic and environmental

correlations between the traits. The more different these correlations are, the more the accuracy is

increased. If the heritability and the genetic and environmental correlations between two traits are equal,

breeding values obtained with a single trait model and with a multiple trait model is expected to be equal.

The chief disadvantages of the multiple trait animal model are that a multiple trait analysis requires

reliable estimates of genetic and phenotypic covariances. These are not always easy to obtain. Further,

multiple trait analyses increases computing requirements substantially. An n-trait multiple animal model

analysis  requires more computing power than n single trait animal model analyses. 

 

In the following, an example of a multiple trait animal model is presented assuming a situation where all

animals with records have all traits recorded. The example is a two trait analysis. We may set up a model

for each trait.

Model for trait 1:

y1  = Xb1 + Zu1 + e1

and for trait 2:

y2  = Xb2 + Zu2 + e2



where yi is a vector of observations for trait i

X is a design matrix for fixed effects

Z is a design matrix for breeding values

bi is a vector of fixed effects for trait i

ui is a vector of breeding values for trait i and

ei is a vector of residual effects for trait i

These models can be combined into the following:

Let   be the additive genetic variance-covariance matrix, i.e. g11 is the genetic

variance of trait 1, g12 = g21 = genetic covariance between the two traits and g22 is the genetic

covariance of trait 2 and be the variance-covariance matrix of residual effects, then

the variances of breeding values and residual effects are assumed to be

where  A is the matrix of additive genetic relationships.

The MME are as shown in equation (34) on page 42:



It is assumed that animals with observations always have both traits recorded. The above MME

equations can then be constructed by assuming X = [X1   X2] and Z = [Z1  Z2]. 

R-1 =   is the inverted residual variance-covariance matrix and 1/F2
A is replaced by

G-1 =  , which is the inverted matrix of additive genetic variances and covariances. 

Written in details, the MME become

Numerical example

Given the following data:

Animal Sex Sire Dam Y1 Y2

4 1 - - 9 7

5 2 2 3 6 5

6 2 2 1 8 7

7 1 5 4 7 6

8 1 6 3 10 8

Genetic variances and covariances (G) and residual variances and covariances (R) are as

follows:



  

Heritabilities and correlations are the following:

   

     

Since it is assumed that the two traits are always measured on the same animal, X1 = X2  and  

Z1 = Z2. 

The following sub matrices can now be constructed:

                



    

The matrix X’X consists of four identical sub matrices . Each of these sub matrices is

multiplied by the respective elements in R-1 to obtain

Z’Z is found as

As indicated, also Z’Z consists of four identical sub matrices. Again each of these four sub

matrices is multiplied by the respective elements of R-1 to obtain 



Now the product of the inverted relationship matrix and the inverted genetic variance- covariance

matrix should be included by adding A-1Gii to the above matrix. The additive relationship matrix is

and the inverse



This inverted relationship matrix is added to each of the four sub matrices in the matrix shown above

after multiplication with the proper element of the inverted genetic variance- covariance matrix. Thus,  



The product X’Z becomes 

Again, each sub matrix is multiplied by the proper element of R-1 to obtain 

X’R-1Z =

The left hand side (apart from the parameter vector) can now be constructed as 



The right hand side is composed of eight sub vectors:

, , , 

,     ,     ,  



Now, the right hand side can be constructed as:

The parameter vector may now be found from the following:





i.e.

b1' = [ 8.7819 6.9926 ]; b2' = [ 7.0907 5.9850 ]

u1' = [ 0.3035 -.0413 -.1088 -.1439 -.4198 0.4346 -.6005 0.3988 ]

u2' = [0.2514 -.0246 -.0929 -.1274 -.3347 0.3648 -.4638 0.3190 ]

The corresponding estimates using a single trait animal model are shown in table 4.1. The ran-

king of the animals is the same in both cases, but the variation in breeding value is slightly

 smaller when using the single trait model.

Table 4.2. Comparison of estimates of fixed effects and breeding values obtained in multiple

 trait and single trait analyses

Effect

Trait 1            Trait 2             

Multiple trait         Single trait     Multiple trait         Single trait     

b1 8.78 8.78 7.09 7.06

b2 6.99 7.00 5.99 5.98

u1 0.3 0.26 0.25 0.18

u2 -0.04 -0.04 -0.02 -0.004

u3 -0.11 -0.09 -0.09 -0.07

u4 -0.14 -0.13 -0.13 -0.11

u5 -0.42 -0.38 -0.33 -0.22

u6 0.43 0.37 0.36 0.27

u7 -0.6 -0.55 -0.46 -0.3

u8 0.4 0.36 0.32 0.22


