4. Esdimation of breedingvalue. BLUP

4.1 Introduction
The selection index principle assumes that true meansand variances ae known. When thisis
the case, the best linear prediction, BLP, of the breeding value, I, is

_ _ _ O,p _
I=T+by,P -P)=1+-2p -P
Op

where I and P arethe true means of breeding value and phenotypic trait, respectively. In
practice, true means and variances are not known. In spite of that, selection indices have
served their purposes. There are, however, some potential sources of error that could be
overcome if fixed effects and breeding values were estimated simultaneously asisthe case
when using BLUP methodology (BLUP = Best Linear Unbiased Prediction):

1 Adjustment for fixed effects is often based on historical data. Therefore, adjustment
factors used may not be quite in agreement with those effects that should be adjusted.
This may change the ranking of potential breeding animals.

2. Adjustment for herd means, by using the record as a deviation from the herd mean,
assumes that the animals in the groupsthat are compared are contemporary. This
may be difficult to achieve in pracice, and often it will result in the groups being so
small that the mean will be estimated with large error which in turn will affect the
phenotypic deviations. Thisis not accounted for in the selection index.

3. Fixed effects are not adjusted for differences in genetic levels of the groups.

4. The selection index does not account for selection going on, nor does it account for
assortative mating.

5. The selection index does not account for different genetic levels of the groups from
which the deviations are computed, e.g. herds. Two animals from different herds
having the same deviation from the mean, will be ranked equal, even if the two herds
have different genetic levels.

When using the BLUP method, where all the effects are estimated simultaneously, these
difficulties have been overcome. The breeding value may be written as

o
u = b+ g + =P - flab,..u.)

Op
where u, = BLUP of true breeding value (or hdf the breeding vduein
some cases)
+g = BLUE (Best Linear Unbiased Estimate) of genetic levd
P = phenotypic observation

f(ia,b,...,u,..)

mean of an estimated value of comparison for each phenotypic ob-
servation based on BLUE of relevant fixed effectsa,b,... and
BLUP of breeding value u for individuals in the comparison group.



In practice, BLUP of breeding values are obtained as sol utions to Henderson's Mixed Model
Equations (MME). MME are normal equations of a generalised |least squarestype. They are
generated from phenotypic observations by means of a statistical model that describes the
observations. Solving such a system of equations resultsin "partial” effects in the same way
as the regression coefficients in a multiple regression. In this way, the effects are estimated by
simultaneously taking other factorsinto consideration. The fixed effects in the model are
BLUE and the random effects are BLUP.

4.2 Animal model
A typical mixed modd might look as follows:

P-jkl = +a;+hj+___+uk+¢_=1.jkl

where P, s aphenotypic observation
is the overall mean
g, h, arefixed effects

u, isarandom effect, e.g. the genatypic value of individual k

&, 1S arandom effect specific for each observation

In matrix form, this can be written

Y, X, X - - -b- Zy Z, . . . -u- e,
1 1
Y, X Xy o .. Zy Zy . . . e,
b, U
= + +
_Yn_ _an X, . . . _ZnI Z, . . . e,]
or
y=Xb+Zu+e (33

It is assumed that the expectations are E(y) = Xb, E(u) =0 and E(e) = 0. Further it is assumed
that the residual's are independently distributed with variance ?,. ThereforeV(e) =1 % =R,
V(u)=A 2 =GandCOV(u,e) = COV(eu) = 0. Hence

G 0
0 R

X and Z are incidence matrices. Thisisthe usual way of writing aBLUP model. In general, b
represents fixed effects and u represents random effects, eg. breeding values. Note that X and
Z are very large when the number of observationsis large.
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In general matrix terms, Henderson's Mixed Model Equations are :

'RIX X'R\Z .

u

X'R Yy
Z'R Yy

G4

ZRX zZR2Z+ 41 L
o



Note that R isdiagonal with of onthediagonal, X and Z areincidence matricesand A isthe
additive relationship matrix. If the animals are unrelated, the variance of A is diagona with
oj on the diagonal, i.e. Iofl . The MME equations can thereforebe written as

xxL xizL xy-L
2 2 2
oe 06 b oe
= 35)
zxLt zizL (rLilel |gznl
2 2 2 2
oe Oe oA_ L Oe
Multiplying through with 05 gives
X'x X'z
b X’
"~ ., o S R ET
Z'X 7Z'7Z + I—2 u Z'y
04
o> Y
The term —: isusually called . Since o + 6> = 0> and h? = —; , o = h%>
2 %4 2 2 0: 9p - h?
and o, = 05 - 0, = (1 - h? o5 Therefore, A = —2 canbewritten as
Ly h?
Example 4.2.1
In the following example, milk yield is recorded for three unrelated cows:
Cow Yield
1 3000
2 4000
3 5000

Spelled out in detail, the model can be written as

P= +tu+tutute
The incidence matrix is most easily set up by listing each animal below the model, writing the
record (YY) to the left and the incidence matrix to the right of the equal sign in the model by
writing a1 if the effect is present and O otherwise (omitting the €'s):

Y, u, ) Uy

3000 1 1 0 0

4000 1 0 1 0

5000 1 0 0 1
3000 1 1 00

ThenP= (4000 , X =|1| andZ= [0 1 0
5000 1 001



XX X'z
Z'X Z'Z

Assuming aheritability of 0.5, becomes1. HenceA™

diagonal. The equation system then becomes:

3

1

1

1

The solution is

2 1
3 3
12
3 3
11
3 6
11
| 3 6

is therefore

11 1]
20 0
020

311
110
101

0 0 2]

UJ|»—A
(98]

A= WIN =

100

12000
3000
4000

=

Wi A= |-

| 5000 |

[ 12000 |
3000
4000

iIsa3x3diagona matrix with 1'sonthe

[ 4000 |
500

| 5000 |

| 500 |

For the three unrelated animals, the system of equations s the following:

3 1
2
o
11+ 2
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1 0

1
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For one animal, theequation is

Thisis the same equation as is obtained by the selection index equations, the only difference
being that in BLUP, is estimated from the data simultaneously with the breeding values.

u;

4.2.1 Use of therelationship matrix

If the animals are related, then the variance of u, A ?,, is no longer diagonal. Use of the

relationship matrix is shown in example 4.2.1.1.

04
> 5 X; - 1)

+O'A

h2(¥, - w)

Example 4.2.1.1
The following data are available:
Animal Sire Dam Trait

1 ? ? 10
2 ? ? 9
3 ? ? 8
4 ? ? 7
5 1 2 9
6 1 2 10
7 3 4 8
8 5 6 11




The animals 1, 2, 3 and 4 are assumed to be unrelated and not inbred. Then the relationship

matrix is:
1.2 1.2 34 5.6
1 2 3 4 5 6 I 8
1 1 0 0 0 0.5 0.5 0 0.5
2 0 1 0 0 0.5 0.5 0 0.5
3 0 0 1 0 0 0 0.5 0
4 0 0 0 1 0 0 0.5 0
5 0.5 0.5 0 0 1 0.5 0 0.75
6 0.5 0.5 0 0 0.5 1 0 0.75
7 0 0 0.5 0.5 0 0 1 0
8 0.5 0.5 0 0 0.75 0.75 0 1.25
The animal model equations are
n 1/ H 1Y
1 1+a)lul |¥

whereY isthe vector of observations on the 8 animalsand 1 is avector of ones of dimension 8.
Let h* be 0.5, then 0: = oi and ). = 1. Theinverserelationship matrix A, is

21 0 0 -1 -1 0 O]
1 2 0 0 -1 -1 0 0
0 0 1505 0 0 -1 0
0 0 0515 0 0 -1 0
-1 -1 0 0 2505 0 -1
-1 -1 0 0 0525 0 -1
0 0 -1 -1 0 0 2 0
0 0 0 0 -1 -1 0 2

With =1, theequations are



8 1 1 1 1 1 1 1 1 72 ]
u
13 1 0 0 -1-120 0] 10
U,
11 3 0 0 -1 -10 0 9
1 0 0 2505 0 0 -1 0l|™ 8
1 0 0 0525 0 0 -1 O0||u|=1]7
1 -1 -10 0 3505 0 -1]|u 9
1 -1 -1 0 0 0535 0 -1, 10
10 0 -1 -1 0 0 3 0 8
Uy
10 0 0 0 -1 -1 0 3] 11
_u8
Consider the equation for animal 1:
+3u, +U,- U - U; = 10
Isolating u, gives u=13(10- -u,+u;+Uy

which can be written as u, =13[(10- )+ (u- Y2 u,) + (us- /2 u,)]

= Ry [-xb) + Y (u,~Yau,)]

2
i=1
The contribution of each progeny to the breeding value of animal 1 is adjusted for half the
breeding value of the mate, i.e. animal 2. Thisis an adjustment for assortative mating. It can
also be seen that the record is adjusted for fixed effects, in this example the mean. For animal
8 the equation is

-U;-Ug+3Ug =11

Rearranging gives 3u;, =11- +ug+U;
U = % (11-p) + 5 (ug + uy)
= Vo (11 - w) + V2 (ug + ug) - 1/6 (uy + uy)
= V(usg + ug) + Vs [11 - p) - %2 (us + uy)l
= Va(u +u) + by [0 - W) - %, + u)]



Thefirst term is the predicted breeding value of animal 8 based on the breeding value of u, and
U, the parents of animal 8. The second term is the phenotypic observation adjusted for fixed
effects and the parents breeding value, weighted by the within family heritability. Thisis an
estimateof the contribution of Mendelian samplingto the breeding value of animal 8. Thewithin
family heritability is

Lra-p

m= = 2 37

Lo v+ (1 - n2
SR AP+ -hY

where F isthe average inbreeding of the parents.

W2 (0505

For thisexample, &,
(0.5)(0.5)+0.5

The transposed sdution vector is
[]J. ul u2 u3 u4 u5 u6 u7 us]

=[ 8.7059 0.8676 0.3676 -.3676 -.8676 .6716 1.0049 -.6471 1.3235]

The breeding value of animds in the base populaion sum to zero. The base population in this

exampleisthe animals 1, 2, 3 and 4. The average of their breeding vduesis
1/4(0.8675 + 0.3676 - 0.3676 - 0.8676) =0

The averages of expected breeding values of animds in subsequent generations are not zero.
Generation 2 in this example is made up of animals 5, 6 and 7. The average of their breeding
valuesis

1/3(0.6716 + 1.0049 - 0.6471) = 0.343

Thisfigure represents selection and random drift. Animals 1 and 2, who had the highest breeding
values in the base populaion, produced two progeny and animals 3 and 4, having the lowest
breeding val uesin the basepopul ation, produced one progeny. Thiswill explain why the average
breeding value of animalsin the first generation is greder than zero. Because of this property
with the animal model, it can be used to estimate response to selection.



Example 4.2.1.2

In thisexample, both  and year are included as fixed effects. The following data are available

Animal Sire Dam Y Y ear
5 1 3 250 2
6 1 3 198 2
7 2 4 245 2
8 2 4 260 2
9 2 4 235 2
4 - - 255 1
3 - - 200 1
2 - - 225 1

We may set up the following model:
y=Xb+Zu+e

where y = vector of observations
b = vector effect of and of year effects
u = vector of breeding values
X,Z =incidence matrices

e = vector of random residual € ements

LetW =[X Z]. Then

XX X'z

x z] -
Z'X Z'7

Then they vector and the W matrix can be set up by writing out the model in detail, omitting e,

and below write y-value or 0 or 1 depending on whether the effect is present or not:



y Boby by uyp uy uy uy us ug uy ug U
250 1 010 0001 0 O0 0 O
198 1 010 0 00 01 0 0 O
245 1 010 000 0 0O 1 0O
260 1 010 000 0 0O O 1O
235 1 010 0 00 0 0 O 01
255 1 1.0 0 0 061 0 0 O 0 O
200 1 1.0 0 01 0 0 0O O 0 O
(225 (1 1 0 0 1 0 0 0 0 0 O O]
Transposing W and multiplying by W gives

(835011111111

3300111000O0O0D0

505000011111

0 000OO0OO0OO0O0OO0OO0OOD

1 1T001000O0O0OO0O

— 1 1T0001000O0O0OO

1 1T0000100O0O0OO

1 01 000O01O0O0O0OO

1 01 0000O0O1O0O0OTO0

1 01 0000O0OO0OT1O0O

1 01 0000O0OOOT1O

1 010000O0O0O0O0T

The inverse of the rdationship matrix can be set up directly, using the method described in
chapter 3. ;is1for theanimals 1-4 and 2 for the animals 5-9:



(2 01 0 -1 -10 0 0
0 2% 0 1%2 0 O -1 -1 -1
1 0 2 0 -1 -1 0 O O
0 1’20 22 0 0 -1 -1 -1
At1=|-1. 0 -1 0 2 0 0 0 0O
-1 0 -1 0 0 2 0 0 O
o -1 0 -1 0 0 2 0 O
o -1 0 -1 0 0 O 2 O
0o -1 0 -1 0 0 0 0 2]
The system of equations then becomes
X'x X'Z b X'y
= (38)
Z'X Z'Z + A7\ |u] |ZVy
Leth*=0.33and A = 2. Then the system of equationsis:
i LB _ -
8§35 0 1 1 1 1 1 1 1 1 b, 1868
3300 1 1 1 O O O O O b, 680
505 0 0 0 O 1 1 1 1 1 1188
000 4 0 2 0 -2-20 0 O “ 0
1100 6 0 3 0 0 -2 -2 -2||" 225
1102 0 5 0 -2-20 0 0|4 200
110 0 3 0 6 0 0 -2 -2 -2 u4: 255
101-2 0 -2 0 5 0 0 0 O u; 250
101-2 0 -2 0 0 5 0 0 O g 198
1010 -2 0 -2 0 0 5 0 O u, 245
1010 -2 0 -2 0 0 0 5 O 260
101 0 -2 0 -20 0 0 0 5_”8 235 |
Uy

The equation for givesthe average adjusted for year effects and breeding values



8 W +3b, +5by + uy +ug +u +oug +tou +tou +oug +ou, = 1868

p =" (1868) - % b, - % b, — Vo (U, + Uy + Uy + Ug + Ug + Uy + Ug + Ug)

The equations for herd effects:

b= (680) - p - Vo (u, + u; + uy,)

b,

1/5 (1188)- w - 1/5 (uy + ug + u; + ug + uy)

These are herd effects adjusted for mean and breeding values. Equation for u, (parent without
own record):
2 u+ U- U- U=0

After rearranging this can be written as

Uy = Yo(Ug - YoUy) + Ya(Ug - Youy) = % 2w, - % u,)

Thebreeding value df aparent without record isbased on breeding val ues of the progeny adjusted

for breeding value of the mates. Equation for u, (parent with own record):
+b, +6uU,+3U,-2U,-2Ug-2Uy =225

Rearranging gives:

u, = 16 225 - p - b)) + Vo [(w, - 2 up) + (ug - 2u,) + (ug - 2 uy)]
u, =16 @y -p-b)+ % Xu, - %u)

Thisisthe record of the parent adjusted for mean and fixed effects. In addition thereisa

contribution from each progeny adjusted for breeding value of the mate.

Equation for u, (animal with record):
B+b,-2u -2u +5u =245

u, = 2 (u, + u) +1/5Q45 - p - b, - 2 (u, + u,))



Thefirst expressionistheaverage breeding value of theparents. The second istheyieldsadjusted
for fixed effects expressed as a deviation from the parental mean and weighted by the within
family heritability. Solution to the equationsis:

L = 235.07

b/

[ -921 126 ]

w' = [ -241 132 -1023 1132 -232 -1272 679 9.79 4.79 ]

4.2.2 Prediction error variance
Henderson has shown that prediction error varianceis afunction of the diagonal elements of the

inverse of the coefficient matrix and the residual variance. Let

Ch Clz_l B cll c”?

- cl c»

¢ Cp

Then

PEV = V(u - 4) = C®0.

PEV isthe fraction of the additive variance not accounted for by the prediction.
What is the proportion of the additive variance not accounted for by the prediction?

ruzﬁ (r;) is the squared correlation between true and predicted breeding value. It is the
coefficient of determination, i.e. it isameasure of the proportion of the variation in true breeding
value that is accounted for by the variation in estimated breeding value. Then

o, - r2oy = (1 - rdo,

is the proportion nat accounted for. Then for animal i

2

ciol = (1 - r)o)



Therefore

PEV = ci)o’,

and standard error of prediction

SEP = \/c¥Ao’

4.3 Reduced animal model
Thebreeding value of an animal can be expressed asthesum of the additive genetic contributions
of gametes from its parents, g, from the sire and g, from the dam:

U =05+ 0q

If thereisno seledion or linkage, and if the gametes unite randomly, the variance of thebreeding

vaueis
2 2 2
V) = Vg) + Ngy) =20, + 20, =0y
Each gametic value can be expressed in terms of the breeding value of the parent (p) from which
it was obtained plus a Mendelian sampling term:

gp:1/2Up+mp,

where u, isthe breeding value of the parent and m, isthe contribution from sampling genes from
the parents to the progeny. The variance of g, is then

V(g,) =0.25V(u,) +V(m,)

and if thereisno selection
Mgy = 025 oy + 0251 - Fyo; = 0.5 - 0.5F )0,

Quaas and Pollak developed in 1980 a gametic or reduced animal model. Such a model can

reduce computational requirements because it reduces the number of equations. The model is



U =0t 0y =Y2U,+Y2u,+m,
where m; =m,+m,
The variance of m is (see page 37)

V(im) = Do’

Equations for an animals breeding vaue are expressed in terms of the breeding value o its
parentsand aMendelian sampling term combining both sireand dam contributions. Thebreeding

valuesfor all progeny with identified parents are
u=Zu,+m
Z has one row for each progeny and one column for each parent. All elements of Z are zero

except for the elements corresponding to the elements of the parents. These elements are %
Under the reduced animal model, the variance of breeding valuesis

M) = ZA,Z's’, + Do,
where A is the additive genetic relationship matrix for the parents and D is a diagonal matrix
with diagonal elements d, = (1 - % n,), where n, isthenumber of known parents, i. .
the coefficient (1 -%an,) becomes 1, ¥aor %2if O, 1 or 2 parents are known (see chapter 3).
Consider the following animal model

yi= tU+t8,

whereu, isthe additive genetic value and e isthe environmental value of thei™ animal. In matrix

notation, the model is
y=Xb+Zu+e

and if there is only one record per animal, Z = | and



") =A0j + Iog

We can expressthe genetic valueof anindividual interms of gametic contributions of itsparents
plus a Mendelian sampling term:

U =%u,+%u,+m

where u, and u, are the breeding values of the sire and dam of animal i and m, isthe Mendelian

sampling. The gametic model is therefore
yi= tYutteu,tmte
The term m and g can be combined into asingle residual term

€, =m+g

with variance

Ve')=d, (1 - F) oy + o.

e

whered, = Y or %if both or one parentisknown. F isthe averageinbreeding of thesire and

the dam. In matrix notation, the gametic model can be written as
y=Xb+Zu, +¢€*

whereu, isavector of breeding values of parentsand Z isanincidence matrix of 0 and %2, where

Y identifies the parents of each animal with record.

We now assume that Nu,) = Apoj and V(e™) = Ioj* where A, is the additive gengtic
relationship matrix among parentsand 2. =d, °, + 2. We can therefore partitiony into

e*

parental records and offspring records, y, and y,,:




Then

loe

My) = S4,8'cy + R, where R = .
0 Io,

e

R isunaffected by selection, A accountsfor all relationship among parents, and Z tracestheflow

of genes from parents to offspring.
The breeding values of the offspring can be obtained by back solving:

U, = 1/2(us + ud) + C|(Y - Xb - ]/Z(us + ud))

where
1 1
c, = = Iy
1 + Oe 1 + ;
dii 031 *
d, isdiagona element i of the D-matrix.
Example 4.3.1
The following data have been collected:
Animal Sire Dam Herd Yield
1 - - - -
2 - - 1 11
3 - - - -
4 - - 2 7
5 1 2 1 10
6 1 2 2 9
7 3 4 2 8

Assume o> = o> = 1. . Thisgives a heritability of h* = 1/(1 + 1) = 0.5. We can set up the

following model:

y=Xb+S8u,+e



The equations are:
X'R'X XR'S
4| B

A
SRX S'R\S + 2 u,
o

X'R Yy
SRy

(39)

X istheincidence matrix for fixed effects. Animals 1 and 3 have no record, animals2 and 5 are

inherd 1 and animals4, 6 and 7 in herd 2. Hence

10100
0 1011

X' =

Parents, i.e. animals 1, 2, 3 and 4 are unrelated. Therefore

1
0
Plo
0

R isdiagonal with o§ onthediagonal elementscorrespondingto the parentshaving record and

elsswhere d, (1 + F’) oj + 03 = 0.5 (1) + 1 = 1.5, because parents are not inbred. R is

therefore

100 0 0 1000 0
0100 0 0100 0
0020 0 0020 0

2 1 3

R = and R =

000 2 0 000 20
2 3
000 0 2 000 0 2
2 3]

Sisapartitioned matrix composed of amatrix with number of rows corresponding to the number
of parents with records and number of columns corresponding to total number of parents. This
matrix containsal for the elementscorresponding to parents with record. In addition S contains
anincidence matrix with zeroesin all places except those elementsidentifying parents, which are
Y. Sistherefore



[0

0
S = |%
Y

0

Then
1
0
0
10100
XR'X =
0 101 1

0
0

10100

X'RIS =

0 101 1

1

3

1

3

Similarly we can compute SRS as

vz
vz

o o o O

win © o

S

W |

wlinn © ©

=)

S O = O

W o

W N

S O = O

o

ok ok o ok o
I}

0
1
22 0 0
2 0 0

0 0 % %




100 0 0
00 % % 0 5 0 0 0 1
002100
L 1 0% % 0 3
s1rs=00001/ v % 0 0
o 00 2 0|ly, » o o
010 0 % 3
- : 2_001/21/2_
0 00 0 =
3.
11 450
3 3
41 o
3 3
o o L 1
6 6
o o 11t
6 6]

Findly, A, a4x4 identity matrix, and the additive genetic variance = 1, so Ap_l% isalso a
4x4 identity matrix. The full equation system isthen 04

12 0 111 o o 172
3 3 3 3
0 21 1 11 11 b, 181
33 3 3 3 3

1 1 .1 1 b, 1
1 1,11 4 5 6L
3 3 3 3 u, 3
L1 1,1 g% 171
3 3 3 3 3

Uy

o L o o 1L 1|, 22
3 6 6|L%] 3

o 1L o o 1,1 92
6 6 3




The following solution is obtained:

b=[10269 8077 |, u =[0.064 0397 0.051 -0.513 ]

The breeding values of the progeny may now be obtained by back solving. Both parents are
known for all offspringand 2, = % =1.Hence c=a.

U= ¥2(u, + U,) + L/3(y - by - Ya(u, + uy)
=150.064 + 0.397) + & (10 - 10.269 - ¥2(0.064 + 0.397)) = 0.064
U= ¥2(0.064 + 0.397) + a(9 - 8.077 - ¥20.064 + 0.397)) = 0.461
u,= ¥%(0.051 + (-.513)) + 1/3(8 - 8.077 - ¥»(0.051 + (-0.513))) = -0.179

4.4 Repeatability model
When there are more observations per animal, the animal model should be modified to a
repeatability model. A repeatability model might have the following form:

y=Xb+Zu+Zp+e

where y = vector of observations
b = vector of fixed effects
u = vector of breeding values
e = vector of residuals
p = vector of permanent environmertal effects

X and Z = incidence matrices

u
Itisassumed that E(y) =Xband V| p |=| 0 Io> 0

e




The MME are

X'xX X'z X'z b X'y
Z'X Z'Z + A7) Z'Z ul=1|2Yy (40)
Z'X Z'Z Z'Z + Iy|lLP Z'y
2 2
. : . 2 2 2 2 64+ 0,
Since the phenotypic variance, ¢, = 0, + 0, + 0, and r = ————
F
o’ 1 o’ 1
then A= <2 ==-"T gpg y--2-_-"T
oi h2 0}2) r - h2

Consider the following data for feed intake on dairy cows from parturition to 4 weeks in the

lactation for first |actation cows:

Cow Sire Dam Feed intake
5 10 1 21,25
6 10 2 18,19 23
7 20 3 3.0
8 20 4 2.8,2.7
9 20 4 2.6

The following modd applies:
y=Xb+Zu+Zp+e

whereb, y, u, e, X and Z are as defined above.

The animals 1 through 4, 10 and 20 do not themsel ves have records. We can partition the vector
of breeding values, u, into u, and u,, where u, contains the breeding values of animals without
records and u, contains breeding values of animals with records. Then Z can be partitioned
correspondingly into Z, and Z,, where Z, is 0. Further, if welet

-1 -1
All A12

A1 = Y4 41)
A21 A22



then the equationsbecome

11T 0 1Z, 1Z,

»] |1y
0 A% A;a 0 ", 0
/ -1 / -1 / Y4 (42)
Z,0 Ay Z,Z, + Ay Z,Z, u, g
/
AR zlz, zjz,+ w|'P] | 2]
Let
02
h? = 4 = 0.1
o, + 0; + 0:
O'2 + 02
r= ———2—=07
6y +0,+0
2
O _1-r_ 3
Ry h?
2
Se_1-r _ g5
2 12 )
()'p r h

To set up the equations, write out the following

Vi || UYp Uy Uy Uy Uy Uy Us Ug Uy D5 Pg D7 Pg Pg

U Ug
2111 0 0 0 0 0 0 1. 0 0 001 0 O0O0O0
251f1 06 0 0 0 0 01 0 0 001 0 0 0 O
18{j11 06 0 0 0 0 0 01 0 O O O 1 O O O
19(;11 60 0 0 0 0 0 01 0 0 O O 1 O O O
23|1f1 0 0 0 0 0 0 01 0 0 0 01 0 0 O
30(ir 0 0 0 0 0 0 0O O1 0 0 O 01 0O
28|f1 06 0 0 0 0 0 0 0 0O1 0 O O O 1 O
271(11 06 0 0 0 0 0 0 0 01 0 0 0 0 1 O
261 0 0 0000 00O0O0T1O0TO0O0 0 1]



starting at the

Call the entire design matrix W and calculate W'W and W'y. Add A" and |

proper elements of W'W to obtain
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The solutionsare b

[-.1309]

- 3716
0.2942
0.1645

10.0438

Ds

Pyl =

Py

Po]

[~ .0419]
0.0419
-.0109
-.0310
0.0245
0.0174)

U
Uy

[-.0373]
-.0674

0.0577};
0.0433
0.0333 |

Us

Ug

U, =
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The equation for cow no. 6 is:

3 +9u6-3u10-3u2+3p6:6.cn),or

n +(M+2)u- U- U+np-= EYI,
1

where n, isthe number of records of thei" individual
U, is breeding value of sire
U, is breeding value of dam

This equation can be rearranged to give

u = LX¥, - p - P, v, - u)) - p,
n.

i 1

The breeding value of animal i is composed of the average of the observations, lg‘:Yi , an
adjustment for , an adjustment for permanent environmental effects, p, and an adj ﬁétlment for
the deviation of the breeding value from an index based on the average breeding values of the
parents, u, and u,. The genetic merit of the animal is thus compared with the predicted genetic
merit based on the genetic merit of the sire and dam of the animal and adjusted for fixed effects
and permanent environmental effects. If the cow also had progeny with records, then the general

form of u, would be

]
ui = lEK — p — pi - &(ul — 1/2(us + ud)) + A E(uj - 1/2(1/!1 + um]))
nl. =1

i ni J=

where Uy, isthe breeding value of progeny of cow,
U,; isthe breeding value of the mate of cow;, and

| isthe number of progeny of cow,,

i.e. each progeny is compared to its pedigree vadue. If there is random mating, then as | goesto
infinity, the sum of these differences goesto zero. The animalsown difference from the pedigree
value will not change by much, but the influence of that difference will decrease as the number
of records, n,, increases. With the exception of males used for Al, most animals will have less
than 20 records or progeny. Therefore, A™ may have asubstantial influence on the eval uation of
the individuals.



4.5 Animal model with grouping
When using the relationship matrix in animal model BLUP estimation of breeding values, it is

assumed that all animals with unknown parents are sampled from a single population with

average breeding value of zero and common variance crfl . Breeding values of animals in

subsequent generations are expressed relative to breeding values of animals in the base
population. However, there will often be animals in a population with unknown parents and
derived from a popul ation with agenetic mean different fromthe onein the population, in which
they are active. An obvious exampleis bulls or boars imported from other countries. Although
being of the same breed, the base population in Denmark may date back several decadeswhile
imported breeding stock may constitute a base population of a much newer date. If thisis not
accounted for in the model, the imported stock will be part of the common base population and

affect the genetic mean, i.e. it will introduce a bias in the breeding values.

A procedure for grouping animals derived from different base popul ations has been devel oped
by Westell and Van Vleck (Westell & Van Vleck, 1987. J. Dairy Science70, 1006). If, for
instance, sires have been imported over aperiod of time, these sires could be assigned to groups
according to their year of birth or country of origin. Each sire with one or both parents unknown
isassigned phantom parents in such away that each phantom parent only has one progeny. The
phantom parents are then grouped according to the chosencriteria(e.g. year of birth, country of

origin, sex of progeny). The following model will apply:

H
Vs = E:'J. + 2, + E Qg5 + &y
=1

where
y; = observation onanimal i in systematic effect |
b, = systematic effect j, e.g. herd |
u, = effect of animd i
a, = additive genetic relationship between the i and the k™ animal, summation being
over al n ancestors of animal i
g. = group effect containing the k™ ancestor

g; = random environmental effect



Note that the term E 4.8, Weighsthe contribution of the group to the observation with the
k=1

proportion of the genes passed on to the animal with record by the ancestors in the group.

Let G be amatrix that assigns ancestors to groups and T alower triangular matrix expressing
the flow of genesthrough generations (obtained from A = TDT’). Thenthe matrix Q = TG is
amatrix expressing the proportion of genes contributed by ancestors of the groups. The model

can then be written
y=Xb+ZQg+Zu+e

The Mixed Model Equations are
XX X'Z K'Zo || & X'y
2y zz+Aa zzo ||ul=| 2y
QIZIX QIZIZ QIEIZQ g QIZII}(’

The breeding value used for ranking the animals is then u* = Qg + u, i.e. the group effect
weighted by the proportion of genes contributed by the group is added to the breeding value.
In other words, the breeding value, u*, is estimated relative to a mixture of two base

populations, depending on the proportion of genes originating from the two base populations.

The MME can, however, be modified in such away that u* is ubtained directly (Westell et al.,
1988. J. Dairy Sci. 71, 1310):

Xx X'z 0 b X'y

Z'X Z'Z+ AjA AJA|u+ Qg |=| 2y
-1 -1

0 ATA ACAl 2 0

where n is the number of animals and p is the number of groups. The relationship matrix is
extended so as to comprise the groups, and the inverse is obtained using the usual rules (see p.
38), i.e.



If parentsunknown, =1
if one parentisknown, =4/3

if both parentsareknown =2,
or =4/(2+ number of phantom parents of animal i assigned to groups).
Then add
. to element (i,i) of A™
- /2tothe elements (i,s), (Si), i,d) and (d,i)

/4 to elements (s,s), (d,d), (s,d) ad (d,s)

Example 4.5.1

Given the following data of lean content measured on pigs:

Table4.1. Lean content based on ultrasonic measurements

Pig no. Sex Sire Dam Per cent lean
4 1 1 - 62.0
5 2 1 3 59.0
6 2 2 4 61.7
7 1 2 5 61.0
8 1 1 6 62.8

If these data are analysed using an ordinary animal model, we set up the model

y=Xb+Zu+e

where
y = vector of observations
b = vector of fixed effects
u = vector of breeding values
X, Z = incidence matrices




The heritability of lean content is estimated to 0.5. The MME before adding A" are

532000111 1 1)[g] [3065]
3300001001 1[b| |1858
2020000110 0fby| |1207
0000000000 0y 0
000 0000O0O0O0 0 0| 0
0 000000000 Oflu|=| O
110000100 0 0| |620
101000010 0 0ful| |590
1010000010 0wl |6L7
110000000 1 0w |60
1 1000000 0 0 1[u| |628]

The inverse relaionship matrix is

(23333 0 05 -6667 -1 05 0 -1
0 2 0 0.5 05 -1 -1 0
05 0 15 0 -1 0 0 0

-6667 05 0 18333 0 -1 0O O

-1

A= -1 05 -1 0 25 0 -1 0
05 -1 0 -1 g 25 0 -1
0 -1 0 0 -1 0 2 0

-1 0 0 0 g -1 0 2

1-05
Since the heritability is0.5, and 4 = o5 - 1.0 ,A" =A™ Adding thisto the coefficient

matrix gives the following MME:



532 0 0 0 1 1 1 1 1]g] [3065]
330 0 0 0 1 0 0 1 b | |1858
202 0 0 0 0 1 1 0 O0]|b| (1207
0 0 0 23333 0 05 -6667 -1 05 0 -1|u 0

000 0 2 0 05 05 -1 -1 0 |u 0

000 05 0 15 0 -1 0 0 [lug|=| O

1 1 0 -6667 05 0 28333 0 -1 0 [lu, | |620
101 -1 05 -1 0 35 0 -1 0lu| |590
101 05 -1 0 -1 0 35 0 -1|u| |617
110 0 -1 0 0 -1 0 3 0lu| |610
110 -1 0 0 0 0 -1 0 3 |u| |628]

and the solutionis =60.43,b’ =[1.35 -0.11] and
u' =[-.014 0.252 -.430 0.281 -.653 0.712 -.393 0.573]

Assuming that the unknown sires and dams have different genetic origin, we may assign thex to
two different groups. We can assign phantom parents to the animals with unknown parents. Each

animal has different phantom parerts:

Anima  Sire  Dam
1 P, P,
2 P, P,
3 P Ps
4 1 P,
5 1 3
6 2 4
7 2 5
8 1 6

The T-matrix is



Ej e T e P e T e T e T e T e R e
Mo o wm e e o oo~ o
[ T e B e T U = T = TR e B e T e B e e
[ T e B e T PN = B e T e B e B e B e T e
=T PO T T = T — T S = T — T =T =
e T O e T o B o T S R o B o B o B o B
e T R e Y e Y e S S s S e S e B e S e T
th bh © © = O O O O O O o
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Lh
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Lh
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125 125 25 0 0 25 25
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We can now assign the phantom parents to groups by setting up the following matrix (G). The matrix
will assign the unknown sires of animals 1, 2 and 3 (phantom parents P,, P, and P;) to one group and
the unknown dams of animals 1, 2, 3 and 4 (phantom parents P, P,, Ps and P;) to another group.

Column 1 identifies group 1 and column 2 identifies group 2:



1 0 1 0
01 0 1
1 0 1 0
01 0 1
1 0 1 0
01 0 1
0 1 0 1

G=|0 0 and theproduct Q=TG=| 03 05
0 0 035 035
0 0 05 05
0 0 025 075
0 0 05 05
0 0 0375 0625
0 0 05 05
0 0

04375 05625

The product, Q, shows how each animal is related to the phantom parentsin group 1, respedively
group 2. The MME are now

AX DA X'Z0 || b XY
27X Z'Z+ AT'VA 220 |\ul=| Z'¥

ozx Qzz Qzzg|lg] |@zv

Inserting the figures from the example gives the following set of equations:



5 3 2 0 o 0 1 11 1 1 20625 29375|[ &) [ 3065 ]

3 3 I I 00 1 o0 1 1 L1875 18125]| & 18538

2 0 2 0 00 0 I 1 0 0 08750 L12501| 3, 120.7

0 0 0 23333 0 05 -6667 -1 5 0 -1 0 0 ||z 0

0 0 0 0 20 5 5 -1 -1 1 0 0 || 0

0 0 0 5 0 15 0o -1 0 0 0 0 0 ||y 0

1 1 0 -6667 5 0 28333 0 -1 0 0 25 75 || =] 620

1 0 1 -1 5 -1 1 35 00 -1 0 5 5| 59.0

1 0 1 5 -1 0 -1 0 35 0 -1 375 625 || 61.7

1 1 0 o -1 0 o -1 0 3 0 5 5|y 61.0

1 1 0 -1 00 0 o -1 0 3 4375 5625 ||, 2.8
20625 11875 875 0 00 25 5 375 5 4375 8945 L168 || g | |1261125
(29375 18125 1125 0 o0 75 5 625 5 5625 1168 17695\ g | |180.3875)

and the solutionis =62.05 b’ =[1.48 0.16],

u’ =[-.016 0.333 -.317 -.009 -.483 0.585 -.164 0.585] andg=[-4.350 0.000]. The group
effects influence both fixed effects and breeding values. These estimates differ therefore from those
obtained using the model without grouping.

The breeding values taking groups into consideration are now u* = u + Qg:

[=016] [ 5 5 [-2191]
00333 ) 5 s 1842
e / A/
/=317/ 1 5 5/ /-2492/
f—.009f f 25 75 743507J/ 1097?
?—.4837? 505 % 0 //; 2658;
10585 /.375 625 /-1046/
;-.164;; 5 5 ? ; 2339;
[0585 ) [4375 5625/ /-1318

A solution for the breeding values directly can be obtained using the MME

X'X X'Z 0 b X'y
X ZZ+Ad Al |la+Qgl=|Z'y
0 Al A1 g 0




These equations look as follows:

532 0 0 0 1 1 1 1 1 0 0 [ «] [3065]
330 0 o0 0 1 ©0 0 1 1 0 0 ||b| |1858
202 o0 o0 0 0 1 1 0 0 0 0 ||b| |1207
0 0 0 23333 0 5 -6667 -1 5 0 -1 -3 -6667| 0
000 0 2 0 5 5 -1-10 -5 -5 |y 0
000 35 0 15 0 -10 0 0 -3 -5 |y 0
1 1 0 -6667 5 0 2833 0 -1 0 0 0 -6667||w|-|620
101 -1 5 -1 0 35 0 -1 0 0 0 ||u| | 590
101 5 -10 -1 0 35 0 -1 0 0 ||u| | 617
110 0 -10 ©0 -10 3 0 0 0 ||lu| | 610
110 -1 0 0 ©0 0 -10 3 0 0 ||u| | 628
000 -5 -5-5 0 0 0 0 0 075 075 ||g| | 0
0 0 0 -1667 -5 -5 -6667 0 0 0 0 075 10833)(g| | 0 |

Thesolutionis =62.20,b’ =[1.32 0.00],
u' =[-2.192 -1.842 -2.492 -1.096 -2.658 -1.047 -2.340 -1.319] andg=[-4.350 0.000].
These estimates are similar to those obtained above.



4.6 Siremodel

Traditionally, sire models have been used in the estimation of breeding value in cattle. The reason for
thisis partly that bulls normally have alarge number of progeny because of the use of Al, so that the
main part of the genetic progress comes from selection of bulls, partly that these models are easier to

handle computationally. The model is

y=Xb+Zs+e,

where vy isavector of observations
b isavector of fixed effects
sisavector of transmitting abilities (half the breeding values)

X and Z are incidence matrices.

s
The expectationof y isE(Y) =Xband V

e 2
0 o, 0 Ioi

Only bulls are evaluated and the additive relationship matrix includes only relationships between

1.2
2.4 P52 then

bulls. Further, since o7 = ihzof, and o




Example 4.6.1

The following example is from Nicolas (1987). Milk yiels has been recorded on 14 cows:

Herd-year-season Sire Cow Yield
1 1 111 3677
1 1 112 4161
1 1 113 3505
1 1 114 3904
1 3 131 3957
1 3 132 3447
2 1 211 3534
2 2 221 2941
2 2 222 3366
2 2 223 3755
2 3 231 2318
2 3 232 2730
2 3 233 3629
2 3 234 3158
The model is
y=Xb+Zs+e

where y = vector of yields for the cows
b = herd-year-season fixed effects
s = transmitting ability of the sires
e = vector of residuals

X,Z = incidence matrices

It isassumed that the sires are unrelated and that the heritability is0.25, giving = (4-0.25)/0.25=15.

To set up the equations, write out the model except the residuals and makeW = [X Z]:



Y | _p, by b, s, 5, 8,
3677 1 1 01 0 O
4161 1 1 01 0 O
3506 1 1 01 0 O
3904 1 1 01 0 O
3957 1 1 .0 0 0 1
3447 1 1 .0 0 0 1
3534 1 01 1 0 O
2941 1 01 01 0O
3366 1 01 01 0O
3755 1 01 01 0O
2318 1 01 0 0 1
2730 1 01 0 0 1
3629 1 01 0 0 1
3158 |1 0 1 0 0 1

Now calculate
0 0 XX X'z X'
ol SN s
0 A “A X L'Z+A A Ay
Sincethesiresare unrelated, A* =1 . The equations therefore become
1468 5 3 6 L[ 48083 ]
6 60 4 0 2 by 22652
8 0 8 1 3 4 b, 25431
5 41 (5 +15 0 0 5, 18782
3 03 0 3 + 15 0 5, 10062
6 2 4 0 0 (6 + 15)] 55 | 19239 |




24.3
; s =271 |;
-514

604.3
19.4

Thesolutionis =3172.0; b =

The svector containsthe transmitting ability of the sires. Their breeding values aretherefore 48.6 for sire
1,54.2 for sire 2 and -102.8 for sire 3.

What is the relation between breeding values obtained by the sire model and by the selection index
method? In the selection index method, the first step is to adjust the data for fixed effects (herd-year-
season, HY' S). The following means can be obtained from the data:

Overall mean Herd-year-season means Sire means
34344 (1) 3775.2 (1) 3756.9
(2) 31789 (2) 334.2

(3) 32065

Now compute the average HY S effect for progeny of each of thethree sires. Sire, has4 progeny inHY S,
and 1 progeny in HY'S,, sire, has 3 progeny in HY' S, and sire, has 2 progeny in HY' S, and 4 progeny in
HYS.,.

HY Sfor sire = (no. of progeny in HY S,( HY Smean,) +
no. of progeny in HY S,( HY Smean,)/no. of progeny

HYSforsire;:  (4(3775) + 3178.9)/5 = 3655.9
HY Sfor sire, : 3178.9
HYSfor sire;:  (2(3775.2) + 4(3178.9))/6 = 3377.7

Next, compute siremeans adjusted far HY S-effects

siremean - (HY Sfor sire - overall mean)

Mean for sire; :  3756.2 - (3655.9 - 3434.4) = 3534.7



Mean for sire,:  3354.2 - (3178.9 - 3434.4) = 3609.7
Mean for sire;:  3206.5 - (3377.7 - 3434.4) = 3263.2

Now the breeding values may be calculated as

_ _ = a/h2n P —
BV barBa = ) = 1+ (- l)a”hZKPn P

0.50.25)(5)

Sire,: BV, = (35347 - 3434.4) = 502
1 + 40.25)(0.25)

Sirey: BV, = —020290) 36097 - 3434.4) = 584
1 + 2(025)(0.25)

Sirey: BV, = — 220290 30635 _ 34344) = -978

1 + 5(0.25)(0.25)"

The breeding values found using the siremodel areu’ =[ 48.6 54.2 -102.8]. Inthe selection index
approach, the data are adjusted for fixed effects before calculating the breeding values. When using
BLUP, fixed effects and breeding values are estimated simultaneously. The result of thisis that fixed
effectsare also adjusted for breeding values. If the herd-year-season effecs and the overall mean used in
the selection index case are adjusted for breeding values, identical breeding values are obtained for the

two methods.
Herd-year-season effects are adjusted for breeding vaues using the following expression:

HYS = unadjusted mean of HYS - ((no. Of siresinHY S) (transmitting ability for sirg))/no. of sires -
adjusted overall mean:

HYS, = 3775.2 - (4(24.3) + 2(-51.4))/6 - 3172 = 604.1
HYS, = 3178.9 - (24.3 + 3(27.1) + 4(-51.4))/8 - 3172 = 19.4

The overall mean adjusted for HY S-effects and for breeding values then becomes
mean = 3434.4 - [6(604.1) + 8(19.4) + 5(24.3) + 3(27.1) + 6(-51.4)]/14 = 3172

Using these estimates, HY S for sirescan now be obtained as:



HYSforsire;:  (4(604.1) + 19.4)/5 = 487.2
HYSfor sire, : 194
HYSfor sire;:  (2(604.1) + 4(19.4))/6 = 214.3

The sire means are adjusted for adjusted HY S using the following expression:
Adjusted sire mean = unadjusted sire mean - adjusted HY Sfor sire
Sire,:  3756.2 - 487.2 = 3269.0
Sire,: 3354.2-194 =3334.8

Sire;:  3206.5 - 214.3 = 2992.2

The breeding values can now be cal culated:

0.500.25)(5)

Sire,: BV, = (3269.0 - 3172) = 485
1 + 40025)0.25)

Sirey: BV, = —020290) (33348 _ 3172) = 5422
1 + 2(025)0.25)

Sirey: BV, = — 220290 59955 _ 3172) = -102.7

1 + 5(0.25)(0.25)

These breeding values are identical to those obtained using the sire model.



4.7 Multipletrait BLUP

The value of an animd is usually not restricted to a single trait. As a general rule, severa traits are
included inthebreeding goal. Using the singletrait animal model to estimate breeding valuesimpliesthat
in combining the breeding valuesinto an index comprising more than onetrait, no attention ispaid to the

phenotypic and genetic correlations between the traits.

A multiple trait animal model takes into consideration associations between the traits, because both
environmental and genetic variances and covariancesare included in the estimation. Therefore, provided
reliable covariances can be obtained, the multiple trait animal model gives better estimates of breeding

values.

The increase in accuracy of estimation depends on the difference in genetic and environmental
correlations between the trats. The more different these comrelations are, the more the accuracy is
increased. If the heritability and the geneticand environmental correlations between two traits are equal,
breeding values obtained with asingletrait model and with amultipletrait model isexpected to be equal.

The chief disadvantages of the multiple trait animal model are that a multiple trait analysis requires
reliable estimates of genetic and phenotypic covariances. These are not always easy to obtain. Further,
multipletrait analysesincreases computing requirements substantially. Ann-trait multiple animal model
analysis requires more computing power than n single trait animal model analyses.
In the following, an example of amultipletrait animal model is presented assuming asituation whereaall
animalswith records have all traitsrecorded. Theexampleisatwo trait analysis. We may set up amodel
for each trait.
Model for trait 1:

y: =Xb, +Zu; + e

and for trait 2:

Y, =Xb,+Zu,+e



where y, isavector of observationsfor trait i

X

isadesign matrix for fixed effeds

isadesign matrix for breeding values

T N

isavector of fixed effectsfor trait i

c

isavector of breeding valuesfor trait i and

e isavector of residual effectsfor trait i

These models can be combined into the following:

[0 el o zlalele]
¥2 0 Xqllhs 0 Zajlua] |es
} be the additive genetic variance-covariance matrix, i.e. g,, iSthe genetic

g11 2812

Let G-
g21 222

variance of trait 1, g,, = g,, = genetic covariance between the two traits and g,, is the genetic

rn1 rz

covariance of trait2and R = [
ra1 rag

} be the variance-covariance matrix of residual effects, then

the variances of breeding values and residual effects are assumed to be

up| [gr1h gpA 00
up| _|eztA gpA 00
e 0 0 ri] ris
es 0 0 re1] roo

rar

where A isthe matrix of addtive genetic relationships.

The MME are as shown in equation (34) on page 42



'R1X

Z'R'X ZR'Z+ 4 —

X'R 'z

b

u

X

/R —ly
Z'RYy

It is assumed that animals with observaions always haveboth traits recorded. The above MME

equations can then be constructed by assuming X

=[X, X,JandZ

=[Z, Z,].

11 12
R*= |:r21 rn} isthe inverted residual variance-covariance matrix and 1/ 2, is replaced by
r

T

11
G'= [EEI gﬁ} , which isthe inverted matrix of additive genetic variances and covariances.

g g

Written in details the MME become

-Klrn}il Xlrlz}ig XerZ] X1r1232 b1 X1r11y1+}{1r12y2
Xgrzl}{] erEEXE erzlzl erEEZQ ho | Xgrzl 1+3{2r22y2
lerHXl 3'11,1212 Z1_r1131_+A Igl1 Elr1232+A lg12 fluy Elr11y1+31r12y2
_Zgrzlxl Zgrzz}{g Zgr2131+A 1 21 Zgr22Z2+A 1 22 uz Zgr21y1+32r22y2_
Numerical example
Given the following data:
Animal Sex Sire Dam Y, Y,
4 1 - - 9 7
5 2 2 3 6 5
6 2 2 1 8 7
7 1 5 4 7 6
8 1 6 3 10 8

Genetic variances and covariances (G) and residual variances and covariances (R) are as

follows:




20 13 G_l_'gll gl2] [ 11450 -09924
13 15 | g2l g22| [-09%24 15267

40 10 21 [p11 Q121 [ 02647 -00588
RZ R =
10 45 21 22 —00588 02353

Heritabilities and correlations are the following:

2_ 2 _pq2r 42 _ 15 oo 1.3+ 10 __ 23  _ a2
By T 2+4 033 b3 (5445 2% Tp A )T T Sy R X TN 038
re = —@Wm =024 1y = —WTSE.B =075,

Since it is assumed that the two traits are always measured on the same animal, X, = X, and
Z,=2,

The following sub matrices can now be constructed:

9 7 10 10
6 5 01 0 1
Yi=|8| Yo=[7| X=[Xy X3]=[0 1 0 1
7 6 10 10
10 H 10 1 0
0001 000000071000 0
0000100000001 000
Z=[Z1 Z3]=|0 00 0 0 1 0000000100
0 0000010000000 T10
0 0000001000000 0 1




X'X=

Lo N B s R WA
| e T s T N [ o
L T NN R o T WA
| e T e S N I

The matrix X’ X consists of four identical sub matrices E ﬂ . Each of these sub matricesis

multiplied by the respective elementsin R to obtain

07941 0
Xprlxy xirlzle_ 0 05294
Xordlxy Xor??x,| [-1764 0
0 -1176
Z'Z isfound as
o 0 00 00 0
0000000
0000000
0001000
0000 100
0000010
. . 000000 1
Z1 Z1%1] Z1Z 0000000
lZg][Zl zg]=lzézll z';zjz 0000000
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Asindicated, also Z’' Z consists of four identical sub matrices. Again each of these four sub

matrices is multiplied by the respective el ements of R*to obtain
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Now the product of the inverted relationship matrix and the inverted genetic variance- covariance
matrix should be included by adding A™G" to the above matrix. The additive reationship matrix is
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and theinverse
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Thisinverted relationship matrix is added to each of the four sub matricesin the matrix shown above

after multiplication with the proper element of the inverted genetic variance- covariance matrix. Thus,
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The product X’Z becomes X'Z =
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Again, each sub matrix is multiplied by the proper element of R to obtain
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The left hand side (apart from the parameter vedtor) can now be constructed as
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The right hand sideis composed of eight sub vectors:
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Now, the right hand side can be condructed as:
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The parameter vector may now be found from the following:
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b, =[8.7819 6.9926];

u,' =[ 0.3035 -.0413 -.1088

u, =[0.2514 -.0246 -.0929

b, =[ 7.0907 5.9850]
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The corresponding estimates using a single trait animal model are shown in table 4.1. The ran-

king of the animalsis the same in both cases, but the variation in breeding value is slightly

smaller when using the single trait model.

Table4.2. Comparison of estimates of fixed effects and breeding values obtained in multiple
trait and single trait analyses

Trait 1 Trait 2
Effect Multiple trait Single trait Multiple trait Single trait
b, 8.78 8.78 7.09 7.06
b, 6.99 7.00 5.99 5.98
u, 0.3 0.26 0.25 0.18
u, -0.04 -0.04 -0.02 -0.004
U, -0.11 -0.09 -0.09 -0.07
u, -0.14 -0.13 -0.13 -0.11
Us -0.42 -0.38 -0.33 -0.22
Ug 0.43 0.37 0.36 0.27
u, -0.6 -0.55 -0.46 -0.3
Ug 0.4 0.36 0.32 0.22




