8.3 Calculating selection index

Inversion of the P matrix is done by a program made by Andrew to be found at the folowing location Andrew Ippoliti's Blog. The selection index can handle any number of traits. It is meant for solving smaller scientific problems and for educational purposes. Note that the numeration of the animals has to be from one in consecutive order and the oldest appear first. Link example


... Input aera .... ....Output area ....
Set digit for print ->

Put your data in the input area and press the botton Evaluate The program can be used for any number of variables.
The format of the input file (a) is specified below: Zero is treated as missing value so if zero is a part of the observation set a constant should be added. The first 4 columns in the dataset shall contain animal, sire and dam and number - the other columns can be used freely for any trait number. The index is calculated as deviations from the means, so they are centred around zero.
If the number of traits in the selection goal are different from the observed trait number. Either there can be introduced an extra trait containing zeros or opposite the economic weight of a trait can be set as zero.

The first data line specify the parameters as follows - referring to first example below as well as in general

             The first line
1.  0 has to be there
 

2.  specify number of variables
    
3-4  has to be filled with zeros

5.- c2 for repeated observation for the trait -otherwise zeros

       The following lines 
    (one for each variable) contain VarP, VarA, economic weight and mean value and correlations 
    - additive correlations above diagonal and phenotypic below

       Followed by the animal lines containing
   animal, sire and dam  and number of obs. + the variables

   The number of observation should be interpreted as following:
    negative numbers own records, works ok
    positive numbers offspring group - only one parent half sib group
 			             - both parents    full sib group
   positive number of obs (it becomes an pseudo animal) and the value of the offspring group is only used to transfer to the parents  

Example of calculating a selection index for 4 animals and animal 3 has 3 observations one for each of the 3 trait with the heritability of .5, .2 and .33, respectively; and both genetic and phenotypic correlations medium to high.
Each line contain: Animal Sire Dam, where 0 means unknown, the number factor, and 3 variables - except first line which specify the parameters explained above, and a line for each variable.
Put the data below in the input
window followed by using the Evaluate 

 
0  3  0  0    0     0     0

1 .5  9  10   0     .707  .6           
5  1  1  50   .65  0    .495   
3  1  .1 200  .5  .52    0             

1  0  0  0    0     0     0   
2  0  0  0    0     0     0 
3  1  2  0    9     0     0   
3  1  2  0    0     45    0  
3  1  2  0    0     0     210
4  1  0  0    0     0     0 
Followed by  the 
Selection index
Animal   Index  Accuracy squared
 
 1.0000	 0.0432	 0.1296	
 2.0000	 0.0432	 0.1296	
 3.0000	 0.0865	 0.5187	
 3.0000	 0.0865	 0.5187	
 3.0000	 0.0865	 0.5187	
 4.0000	 0.0216	 0.0324	

( relationships)
 1.    0.   0.50 0.50 0.50  0.50 
 0.    1.   0.50 0.50 0.50  0. 
 0.50  0.50 1.  1.   1.    0.25 
 0.50  0.50 1.  1.   1.    0.25 
 0.50  0.50 1.  1.   1.    0.25 
 0.50  0.   0.25 0.25 0.25  1.  
( the P matrix)
 1.0000	 1.4534	 0.8660	
 1.4534	 5.0000	 2.0139	
 0.8660	 2.0139	 3.0000	 
                              
( the A matrix)
 0.5000	 0.4999	 0.4242	
 0.4999	 1.0000	 0.4950	
 0.4242	 0.4950	 1.0000	 

A very simple example, 1 trait h2=0.2 weight factor=1 and mean value=10, 4 animals sire and 2 offspring with observations 9 and 13, and one offspring without observation.
Put the data below in 
the input window followed by 
using the Evaluate 


 
 0  1 0 0 0 

 1 .2 1 10 0             
 
 1  0 0 0 0 
 2  1 0 0 9   
 3  1 0 0 13
 4  1 0 0 0
Followed by

Selection index
Animal   Index  Accuracy squared
 
 1.0000  0.1904  0.0952 
 2.0000 -0.0776  0.2080 
 3.0000  0.5538  0.2080 
 4.0000  0.0952  0.0238 
( relationships)
 1.0000  0.5000  0.5000  0.5000 
 0.5000  1.0000  0.2500  0.2500 
 0.5000  0.2500  1.0000  0.2500 
 0.5000  0.2500  0.2500  1.0000 

( the P matrix)
 1.0000  0.0500 
 0.0500  1.0000
                              
( the A matrix)
0.2000

And the same observation joined in a mean of 11 in a half sib offspring group ("animal" 3.)
Put the data below in 
the input window followed 
by using the Evaluate 

 
 0  1 0 0 0 

 1 .2 1 10 0             
 
 1  0 0 0 0 
 2  1 0 0 0  
 3  1 0 2 11
 4  1 0 0 0
Resulting in the following
in the output window


Selection index
Animal   Index  Accuracy squared

Animal 3 represent an offspring group 

 
 1.0000  0.1904  0.0952 
 2.0000  0.0952  0.0238 
 3.0000  0.3809  0.0000	
 4.0000  0.0952  0.0238 
 
( relationships)
 1.0000  0.5000  0.5000  0.5000 
 0.5000  1.0000  0.2500  0.2500 
 0.5000  0.2500  1.0000  0.2500 
 0.5000  0.2500  0.2500  1.0000 

( the P matrix)
 0.5250 
                              
( the A matrix)
0.2000

Or the same observation joined in a mean of 11 in a full sib offspring group ("animal" 3.)
Put the data below in 
the input window followed 
by using the Evaluate 

 
 0  1 0 0 0 

 1 .2 1 10 0             
 
 1  0 0 0 0 
 2  0 0 0 0  
 3  1 2 2 11
 4  1 0 0 0
  
Selection index
Animal   Index  Accuracy squared

Animal 3 represent an offspring group 

 1.0000  0.1818  0.0909 
 2.0000  0.1818  0.0909 
 3.0000  0.3636  0.0000	
 4.0000  0.0909  0.0227  
 
( relationships)
 1.0000  0.0000  0.5000  0.5000 
 0.0000  1.0000  0.5000  0.0000 
 0.5000  0.5000  1.0000  0.2500 
 0.5000  0.0000  0.2500  1.0000 

( the P matrix)
0.5500  
                              
( the A matrix)
0.2000

Or repeated observations; h2=0.2, c2=0.1 weight factor=1 and mean value=10, 3 animals sire and 1 offspring with observations 11 based on two repetitions, and an offspring without observation
Put the data below in 
the input window followed
 by using the Evaluate 

   
 0  1 0 0 .1 

 1 .2 1 10 0             
 
 1  0 0 0  0 
 2  1 0 -2 11   
 3  1 0 0  0
 
 
 
Selection index
Animal   Index  Accuracy squared
 
 1.0000  0.1538  0.0769 
 2.0000  0.3076  0.3076 
 3.0000  0.0769  0.0192 

( relationships)
 1.0000  0.5000  0.5000 
 0.5000  1.0000  0.2500 
 0.5000  0.2500  1.0000  
( the P matrix)
0.6500 
                              
( the A matrix)
0.2000

Or the same observation - 2 half sib's and the mother to one of the half sibs. Note the negative weight factors of the mother for the estimation of the father, the b's
Put the data below in 
the input window followed 
by a return stroke 
 
 
 0  1 0 0 0 

 1 .2 1 10 0             
 
 1  0 0 0 0 
 2  0 0 0 9  
 3  1 2 2 13
 4  1 0 0 9 
 

Selection index

Animal   Index  Accuracy squared
 1.0000	 0.4567	 0.1339	
 2.0000	 0.2688	 0.2595	
 3.0000	 0.9488	 0.0000	
 4.0000	 0.0344	 0.2148	 
 
( the b's)
-0.0096	 0.1918	 0.0810	-0.0040	
 0.0962	 0.0810	 0.1898	 0.0405	
 0.0951	-0.0040	 0.0405	 0.1979	

( the P matrix)
 1.0000	 0.1000	 0.0000	
 0.1000	 1.0000	 0.0500	
 0.0000	 0.0500	 1.0000  
                              
( the A matrix)
0.2000

Two traits - positive correlation - three observations and five related individuals
Put the data below in 
the input window followed
by using the Evaluate 
 
 
 0  2 0   0  0   0

 1 .2   1 10 0  .5   
 2 .5 0.4 40 .6  0     
 
 1  0   0  0  0   0
 2  0   0  0  0   0 
 3  1   2  0  0  45
 4  1   0  0 11   0
 5  1   0  0 0   37
 

Selection index

Animal   Index  Accuracy squared
 
 1.0000	 0.2890	 0.1127	
 2.0000	 0.4630	 0.0396	
 3.0000	 0.8390	 0.1714	
 4.0000	 0.3348	 0.1849	
 5.0000	-0.3068	 0.1714	 
( relationship)
 1.0000	 0.0000	 0.5000	 0.5000	 0.5000	
 0.0000	 1.0000	 0.5000	 0.0000	 0.0000	
 0.5000	 0.5000	 1.0000	 0.2500	 0.2500	
 0.5000	 0.0000	 0.2500	 1.0000	 0.2500	
 0.5000	 0.0000	 0.2500	 0.2500	 1.0000	

( the P matrix)
 2.0000	 0.0395	 0.1250	
 0.0395	 1.0000	 0.0395	
 0.1250	 0.0395	 2.0000	
                              
( the A matrix)
 0.2000	 0.1581	
 0.1581	 0.5000

Two traits - negative correlation - the same observations
Put the data below in 
the input window followed 
by using the Evaluate 
 
 
 0  2 0   0  0   0

 1 .2   1 10 0  -.5 
 2 .5 0.4 40 -.6  0   
 
 1  0   0  0  0   0
 2  0   0  0  0   0 
 3  1   2  0  0  45
 4  1   0  0 11   0
 5  1   0  0 0   37
  
Selection index

Animal   Index  Accuracy squared
 
 1.0000	 0.0915	 0.0338	
 2.0000	 0.0549	 0.0014	
 3.0000	 0.1281	 0.0139	
 4.0000	 0.1523	 0.1233	
 5.0000	-0.0058	 0.0139	   
( relationship)
 1.0000	 0.0000	 0.5000	 0.5000	 0.5000	
 0.0000	 1.0000	 0.5000	 0.0000	 0.0000	
 0.5000	 0.5000	 1.0000	 0.2500	 0.2500	
 0.5000	 0.0000	 0.2500	 1.0000	 0.2500	
 0.5000	 0.0000	 0.2500	 0.2500	 1.0000	

( the P matrix)
 2.0000	-0.0395	 0.1250	
-0.0395	 1.0000	-0.0395	
 0.1250	-0.0395	 2.0000	
                              
( the A matrix)
 0.2000	-0.1581	
-0.1581	 0.5000	

Two traits - negative correlation - large half sib progeny groups
Put the data below in 
the input window followed 
by using the Evaluate 
 
 
 0  2 0   0  0   0

 1 .2   1 10 0  -.5 
 2 .5 0.4 40 -.6  0   
 
 1  0   0  0  0   0
 2  0   0  0  0   0 
 3  1   2  0  0  45
 4  1   0  1000 11   0
 5  1   0  1000 0   37
 

Selection index

Animal   Index  Accuracy squared
 
1.0000	-0.3624	 0.9684	
 2.0000	 0.0887	 0.0015	
 3.0000	-0.0480	 0.2457	
 4.0000	-0.0011	 0.0000	
 5.0000	-1.0380	 0.0000 
( relationship)
 1.0000	 0.0000	 0.5000	 0.5000	 0.5000	
 0.0000	 1.0000	 0.5000	 0.0000	 0.0000	
 0.5000	 0.5000	 1.0000	 0.2500	 0.2500	
 0.5000	 0.0000	 0.2500	 1.0000	 0.2500	
 0.5000	 0.0000	 0.2500	 0.2500	 1.0000	

( the P matrix)
 2.0000	-0.0395	 0.1250	
-0.0395	 0.0509	-0.0395	
 0.1250	-0.0395	 0.1268	
                              
( the A matrix)
 0.2000	-0.1581	
-0.1581	 0.5000	

Two traits - negative correlation - large full sib progeny groups
Put the data below in 
the input window followed 
by using the Evaluate 
 
a=
 0  2 0   0  0   0

 1 .2   1 10 0  -.5 
 2 .5 0.4 40 -.6  0   
 
 1  0   0  0  0   0
 2  0   0  0  0   0 
 3  1   0  0  0  45
 4  1   2  1000 11   0
 5  1   2  1000 0   37
 
Selection index

Animal   Index  Accuracy squared
 
 1.0000	-0.1562	 0.4928	
 2.0000	-0.2264	 0.4927	
 3.0000	 0.0270	 0.1276	
 4.0000	-0.1384	 0.0000	
 5.0000	-0.4706	 0.0000	 
( relationship)
 1.0000	 0.0000	 0.5000	 0.5000	 0.5000	
 0.0000	 1.0000	 0.0000	 0.5000	 0.5000	
 0.5000	 0.0000	 1.0000	 0.2500	 0.2500	
 0.5000	 0.5000	 0.2500	 1.0000	 0.5000	
 0.5000	 0.5000	 0.2500	 0.5000	 1.0000	

( the P matrix)
 2.0000	-0.0395	 0.1250	
-0.0395	 0.1009	-0.0790	
 0.1250	-0.0790	 0.2517	
                              
( the A matrix)
 0.2000	-0.1581	
-0.1581	 0.5000	

Back to the other programs

The theory is described well in Erling Strandbergs notes
and in the selection theory is described by Joel Weller in the book "Economic aspects of animal breeding" Chapman Hall, London.